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ABSTRACT 

A family of infinite subsets of the set N of natural numbers will be called 
almost disjoint iff any two of its members have finite intersection. We shall 
define such a family ~" to be n-separable iff for every decomposition ~ = 
{D1, "-" Dn} of N into n or fewer disjoint subsets there exist sets F~ ~- 
and D~ ~ such that F ~ D, and we shall use this and related notions to 
classify almost-disjoint families, using, on occasion, special axioms of set 
theory. 

1. Introduction 

For any infinite denumerable set S we define two subsets F ,G c S to be 

almost disjoint ifftheir intersection F n G is finite, and we define a family ~ of 

subsets of S to be an almost-disjoint family iffevery member o f ~  is infinite, 

itself is infinite, and any two distinct members o f ~  are almost disjoint. 

It was first proven by Cantor that no countable maximal almost-disjoint family 

can be maximal, and it is equally well known that there always exist almost- 

disjoint families of  cardinality 2 ~°. On the other hand the author is not aware of  

anything being known about the internal structure of such families. This is not 

surprising, however, when we remember that the proof of the existence of maximal 

almost-disjoint families appears to require the axiom of choice (which we shall 

assume, without further mention, throughout this paper), and that even with this 

axiom, the existence of  such maximal families having cardinality less than 2 ~° 

is undecidable. This latter is especially important because even though ourclas- 

sification scheme will be well defined for all families of almost-disjoint sets (and, 

in fact, all families of subsets of some base set), many of our stronger existence 

theorems will require the hypothesis that all maximal almost-disjoint families have 
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cardinality 2 ~°. Elsewhere [4] we shall prove that  it is consistent that this hy- 

pothesis be false; here we shall prove (9.3) that it is a consequence of Martin 's  

axiom [5] and therefore the continuum hypothesis. This will allow us to conclude 

that at least in certain models of set theory, large classes of almost-disjoint families 

do exist. We shall conclude, in Section 10, with some applications to fiN - N. 
At this point we wish to acknowledge our debt to Gustave Choquet whose two 

papers [1,2] were the inspiration for this work. 

2. Separability 

We begin with some additional notation. I f f  is any function and A and B are 

any sets, then dmf  will be used to denote the domain o f f ,  cdA will denote the 

cardinality of A, aB will denote the set of all functions from A into B, B a will denote 

cd(aB), and f[A] will denote the set {f(a): a cA}. We shall refer to f as being 

complete if for each b in the range o f f  we have cd{a : f (a)  = b} = cd(dmf). 

Also, for any set S, P(S) will denote the power set of the power set of S, A(S) 
will denote the set of all almost-disjoint families of subsets of S, and M(S) will 

denote the set of all maximal members of A(S). For any two families ~-, ff • P(S), 
let ~,~/ff denote the family {F•o~:  ~G~ff  F ~ G}. When no confusion can 

result, we shall usually write ~ / M  rather than ~/{M}. A family ~ • P(S) will be 

called a decomposition of S iffit  is finite, its members are pairwise disjoint and its 

union is S. For any set S and each natural number n we shall useD,(S) to denote 

the set of all n or fewer element decompositions of S and we shall use D(S) to de- 

note the set of all such decompositions. Since, with only one exception (9.6), the 

properties of the families which we construct will not depend upon the specific 

set S with which we begin, we shall generally use the set of natural numbers for 

this purpose and shallreserve the symbol N for this set. Whenever we speak of  an 

almost-disjoint family without specifically stating over which set it is taken, we 

shall be referring to one taken over N, i.e. a member of A(N). 

Our main tool for classification will be the notion of "separability". We define 

a family ~'eP(S) to separate over a decomposition ~sD(S) i f f ~ - / ~  is not 

empty, i.e., iff at least one member o f ~  is completely contained in some member 

of the decomposition. In applications there will often be not only one such member, 

but infinitely many. When we wish to distinguish, we shall refer to ~- as weakly 

or strongly separating over ~ depending upon whether o°o~/~ is finite or infinite. 

Finally, we extend these notions by defining a family ~ ~ P(S) to be (strongly) 
n-separable iff it (strongly) separates over every decomposition D ~D,(S). 
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These notions can be generalized to decompositions of n-tuples in a natural way. 

For any set A let [A]" be the set of all m element subsets of A, and for any family 

e P(S) let l ~  1" = {[F]": F E ~ } .  Then Ramsey's theorem [6] can be thought 

of as saying that if ~ is the family of all infinite subsets of N and ~ is any de- 

composition of [N] n (i.e. ~ eD([N]")) ,  then 1 ~  I n /~  # ~ .  It therefore seems 

reasonable to refer to a family .~ as (strongly) m-n-separable iff for each de- 

composition ~eDn( [N]  m) the family I ~ [n/~ is nonempty (infinite), and fully 

Ramsey iff it is strongly m-n-separable for every m and n belonging to N. Our 

notions of n separability then reduce to 1-n-separability. However, in this paper 

we shall not treat the general case but shall confine ourselves to the aforementioned 

special case with the exception of an occasional mention of fully Ramsey families. 

We begin our task of classifying families by proving that there is at most one 

number n for which a family is n-separable but not strongly n-separable. 

THEOREM. 2.1. Every n+l-separable family o~eP(N) containing only 

infinite members is strongly n-separable. 

PROOF. Assume there exists a decomposition ~ e D , ( N )  such that 0~-/~ is 

finite. Then there exists a finite set E containing at least one point from each 

member of Y / ~ .  But now, 5 does not separate over 

( ( n  - o e u (E}) I(N). [ ]  

Thus any family ~ e P(N) falls into one of the following categories. 

2.2.1. For every n ~ N, ~ is strongly n-separable. 

2.2.2. There exists an n EN such that ~ is strongly n-separable but is not 

n + 1-separable. 

2.2.3. There exists an n e N  such that o~- is n-separable but not strongly n- 

separable, and therefore by 2.1, is not n + 1-separable but is strongly m-separable 

for every m < n. 

We shall refer to families satisfying 2.2.1 as fully separable, those satisfying 2.2.2 

as sharply n-separable, and those satisfying 2.2.3 as weakly n-separable. 

Although all families in P(N) can be classified using these notions, we shall be 

interested only in almost-disjoint families and, in particular, maximal almost- 

disjoint families. Unfortunately, maximality will not be of any great use because: 

THEOREM 2.3. Every weakly n-separable, sharply n-separable, fully separ- 

able, or fully Ramsey family ~ e A(N) can be extended to a weakly n-separable, 
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sharply n-separable, fully separable, or fully Ramsey family f~eM(N), 
respectively. 

PROOF. If  o~ is fully separable or fully Ramsey, then any extension ~ ~ M(N) 

will do. As the remaining two cases are similar to each other, we shall prove only 

one. Suppose, for example, that ~ e A(N) is weakly n-separable. Let ~ be any 

family such that o~- u or: e M(N), let ~ eD,(N) be any n element decomposition 

such that  J / ~  is finite, and let E c N be any finite set such that Eintersects 

every member of ~ .  Then f¢ = o~ kJ {H w E: H c ~g'} is also weakly n-separable 

and ~- ~ f~eM(N).D 

3. Absolute existence 

We do not know if the existence of all the types of families mentioned in 2.2. 

follows from the standard axioms of set theory (ZF + AC) nor do we know 

whether the existence of one type of family necessarily implies the existence of any 

or all other types. In this section we shall present two partial results; later, in 

Section 8, we shall show that much more is possible if we allow additional axioms. 

We begin by exhibiting, for reference, an almost-disjoint family of cardinality 

2 ~° . The existence of such a family is well known. 

CONSTRUCTtON 3.1. For each real number r let [r] be the greatest integer less 

than r, and let A t =  {[10"r]: n~N}. Then ~ '-= {At: 1 __< r <  10} is an almost- 

disjoint family of cardinality 2 ~° . [] 

Using this we now have: 

THEOREM 3.2. There exists a fully Ramsey almost-disjoint family ~" such 

that for each m e N  and each decomposition ~ e D ( [ N ]  m) the family I ~ l m / ~  

has cardinality 2 ~°. 

PROOF. Let N={G~:c~e2 e°} be any almost-disjoint family of cardinality 

2 e° (in particular f¢ may be the family constructed in 3.1), and l e t f  be any complete 

function from 2 ~° onto U{D([g]m) • meN}.  For each a e 2  ~° we may choose, 

using Ramsey's theorem, an infinite set F,  _ G~ such that iff(c0 eD([N]m), then 

for some Def(oO we have [F,]"~D.  Then the family ~ - = { f , : c ~ e 2  e°} 

has the desired properties. [] 

We also have: 

THEOREM 3.3. I f  there exists a family o~eA(N) which is n + 1-separable 

but not n + 2-separable, then there exists a sharply n-separable family 

fYe M( N). 
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PROOF. First assume that o~ is only weakly n + 1-separable. Then there 

exists a decomposition ~ E D , + I ( N  ) such that  o ~ / ~  is finite. But the family 

= ~ - ~ - / ~  differs from ~ by only finitely many members, so it must strongly 

separate over exactly the same decompositions as ~- does. Thus, because it 

doesn't  separate over ~ ,  it must be sharply n-separable. Theorem 2.3 now allows 

us to extend ~8 ~ to a sharply n-separable family ~ c M(N). 

Now suppose ~- is sharply n + 1-separable and choose a decomposition 

ED,+2(N ) over which ~- does not separate and a set D e ~ .  o~ must be at least 

strongly 2-separable so the family f = ~ / ( N  - D) must be infinite. Choose any 

~ D ~ ( N  - D). ~ k) {D} ~D,+I(N ) so ~ / ( ~  U (D}) is infinite. But . ~ /O  = ~ so 

~ / ~  U {D} = o~/~ _- ~ / 8  must be infinite. Thus ~ is a strongly n-separable 

member of A(N - D). However, J g / ( ~  - (D}) _~ ~ / ~  --- ~ so ~ is not  n + 1- 

separable and is therefore sharply n-separable (over N - D). Now let Z be any 

bijection from N - D onto N and let ~¢~* = { Z [HI : H e ~/g). ~f* is clearly a 

sharply n-separable member of  A(N) and can therefore, by 2.3, be extended to a 

maximal such family. []  

4. Disjoint sets 

Since almost-disjointness is simply a generzlization of  disjointness, we should 

ask whether almost-disjoint families contain non-singleton disjoint subfamilies, 

i.e., non-singleton subfamilies whose members are pairwise disjoint. In general 

the answer is no; take any family and add one fixed element of  the underlying 

set to each of its members. However, the situation with respect to families having 

separability properties is quite different. 

TaEOREM 4.1. Let o~-EA(N) be strongly 2-separable and let f¢ be any finite 

disjoint subfamily of ~'.  Then there exists an infinite disjoint fami ly  ~ such 

that (~ c Jt ~ c J . .  

PROOF. It is sufficient to show that every finite disjoint subfamily can be 

extended to larger disjoint subfamily. Thus let ~ ~_ ~ be a finite disjoint family, 

and let ~ = { U ~ , N - U f ¢ } ~ D 2 ( N ) .  Because ~ is strongly 2-separable 

~ " / ~  = ~/~.J f9 U , ~ / ( N  - '.3 fg) is infinite. However, because ~ is finite, ~-[  w f# 

must be ~ itself, and therefore ~ / ( N -  U~)  must be infinite. But, for any 

H e g / ( N  - U~),  the family f¢ u {/4} is a disjoint subfamily o f @  which extends 
cg. E3 
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COROt.LARY 4.2. I f  J" e A ( N )  is strongly 2-separable, then for  each F so~': 

a) there exists a set G e o~ such that F n G = ~ ,  

b) there exist infinitely many G~o~  such that F n G = f2~, 

c) there exists an infinite disjoint f¢ such that F~ f~  c ~ ' .  

Later (8.4), we shal 1 prove, using the additional hypothesis that every member of 

M(N)  has cardinality 2 ~°, that neither 4.1 nor even 4.2a can be extended to weakly 

2-separable families. We do not know whether every weakly 2-separable family 

contains a disjoint pair of elements; we conjecture that it does. We do have some 

positive results for weakly 2-separable families however; these are somewhat 

similar to 4.2 but modulo finite sets. 

THEOREM 4.3. I f  o~ E A(N) is 2-separable, then: 

a) for  each F~o~" there exist infinitely many sets G6o~  such that F n G 

contains at most one point, 

b) there exists an infinite subfamily f9 ~ ~" and a finite set M ~ N such that 

for  any two distinct members F, G ~ f9 we have F n G = M.  

PROOF. We first construct, by induction, a sequence {Hi: i e N }  of distinct 

members of o~- and a sequence of finite sets Ei as follows. Choose any member F 

ofo~ as H1 and let E 1 = {k} where k is any member of H 1. Now assume we have 

already chosen H1 , . . - ,H ,  eo~r and finite sets E1 ~ E2 - --" _c E, such that for 

each i < j < m < n we have H i n Hj  c E i and ~ # H~ n E m ~_ Ej .  Let ~ be the 

decomposition { Ui_<nH~- E,, E,  U (N - Ui_<,H~)}. Let H.+ 1 be any member of  

~ - / ~  (which, by the 2-separability of  o~, is not  empty). We see immediately that 

Hn+x must be a subset of E.  U ( N  - ui_<,Hi). I f  Hn+ 1 n E n is not empty, let 

E,+ 1 = E,; otherwise, let En+ 1 = E. U{m} where m is any member of  H,+ 1. 

Now let ~ = {Hn: n ~ N }  and let E = U{E.: n ~N}. We first note that for each 

n > 1 we have H.  n H~ ___ E~ = {k}; therefore we have satisfied part a of our 

theorem. For part b. we distinguish two cases. 

Case 1. E is finite. Then for some M ~ E the family f~ = {H ~ ~e': H n E = M} 

is infinite. From the construction it easily follows that for any distinct F, G ~ 

we have F n G = F n G n E = ( F n E )  n ( G r s E ) = M n M = M .  

Case 2. E is infinite. It follows directly from the construction that ifEn+ i # En, 

then for every i n n  we have Hn+ l n H i c _ H . + l n E , = ~ .  Hence the set 

f¢ = {H/+ 1 : Ei+ ~ # Ei} is pairwise disjoint. Thus we may set M = ~ .  []  
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5. Complete separability 

Although full separability appears to be a very strong property, we shall in- 

troduce an even stronger one; one which in a sense is maximal. Suppose 

~ A(N), M ~_ N, and for some finite family ~ _ ~ we have M ~ U ~. Then 

we shall say that ~'finitely dominates M. Clearly, in this case, ~ / M  may be 

empty and, in fact, one can always find sets M for which it will be. We shall 

define a family ~ -~A(N)  to be completely separable iff this is the only case in 

which ~ / M  is empty, i.e. iff for every M ~ N either ~ finitely dominatesM or 

~' /M is not empty. Equivalently, we are defining a family ~ ~ A(N) to be com- 

pletely separable iff every set M _ N either contains a member of  ~ as a subset 

or is itself a subset of  the union of a finite subfamily of ~ .  We first note that 

complete separability is at least as strong as full separability. We do not know if 

complete separability implies full Ramsey. 

THEOREM. 5.1. I f  ~" e A(N) is completely separable, then it is fully separable. 

PROOF. Let ~ eD(N). ~ cannot finitely dominate every D E ~ and still be an 

infinite almost-disjoint family so by complete separability it must separate over 

N. Thus ~ is n-separable for every n e N. []  

On the other hand, if we remove one member from a fully separable family 

or one element from every member of such a family, the resulting family will 

remain fully separable. Thus we see from the following theorem that full separ- 

ability does not imply complete separability. 

THEOREM 5.2. I f  ~ A ( N )  is completely separable, then ~ M ( N )  and 

u~,~= N. 

PROOF. Suppose ~ e A ( N )  is completely separable and M is any infinite 

subset of N which is not a member of ~ .  If  ~ finitely dominates M, then clearly 

~" u {M} CA(N); on the other hand if o~- doesn't  finitely dominate M, then by 

complete separability there exists an F e ~ such that F ~ M, so again ~ U {M} 

is not almost disjoint. Thus ~ is maximal. Similarly, we note that if there exists 

an n ~ N - u ~ ,  then ~" cannot finitely dominate {n} nor can any member of  

be a subset of  {n}. []  

We stated earlier that complete separability was, in a sense at least, the strongest 

possible type of separability. However, it would appear that we could strengthen 

the property by requiring that ~ / M  be infinite for every set M not finitely 
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dominated by o~. We now show that this actually follows from our present 

definition. 

THEOREM 5.3. I f  ~ ' e  M(N) is completely separable and M is any subset of  

N, then ~ ' / M  is infinite iff °o°J doesn't finitely dominate M. 

PROOF. Suppose o~'/M is finite. Since ~" is completely separable and no 

member of o~- can be a subset of M - k3 ~ / M ,  ~ must finitely dominate 

M - t.) o~'/M. Thus for some finite subfamily f~ co~'we have M -  u ~ ' / M ~  t_) f9 

which in turn implies that M c U ( ~ / M  t.) N). Hence ~ finitely dominates M. []  

6. Star separability 

Since the families which we consider are only almost disjoint, it seems reasonable 

to consider also, notions such as "almost separable". For example let o~ e M(N) 

be completely separable, and let f# = {F t3 {1}: F e ~ - } .  While it is clear that f¢ 

is not even 2-separable, it is also clear that it should be considered as having 

some "separabil i ty" property. Thus while N may not separate over some de- 

composition ~ e D ( N ) ,  there will nevertheless exist sets Gef¢  and De-@ such 

that N is "a lmost"  a subset of D. It is this property of f¢ and -~ which we wish 

to explore. 

We begin by introducing some new notation. For any two sets A and B we set 

A ___ *B iff A - B is finite and A = *B iff A ~ *B and B _~ *A. Using these, we 

define, for any two families 5 , f g e P ( N ) ,  the family 

o~/*f~ = { F e ~ - :  3G~fgF c__ *G}, 

and i f o ~ / * ~  ¢ ~ ,  we say that ~" *separates over N. Finally, we define a family 

e P(N) to be n-*separable iff it *separates over every decomposition -@ eD,(N). 

We note that this definition is somewhat arbitrary. We could, just as easily, 

have generalized the definition of a decomposition to have allowed its members 

to have nonempty albeit finite intersections, and we could have required only that 

o~/*N ~ ~ for all but finitely many members of D,(N). However, it is easily 

seen that changes of this kind in the definitions would in no way affect the n-  

*separability of any family. An apparently more significant change would be to 

require in the definition of *separability that o~-/*~ ¢ * ~ .  However, even this 

would not affect the n-*separability of almost-disjoint families as can be seen by: 

THEOREM. 6.1. I f  ~ ' e A ( N )  is n-*separable, then for every ~ e D n ( N  ) the 
family ~,~'/*~ is infinite. 
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PROOF. Suppose o~ is n-*separable. Let M = {keN: For some ~eDn(N ) the 

set o~ /*~  has exactly Ic elements}. I f  M is not empty, it must contain a least 

element m. Choose some decomposition ~ =  {D1,.-.,Dn) such that ~ - / * ~  

= {F1,.", Fro} has exactly m elements. We may assume without loss of generality 

that F1 _ *Dx. Now choose an infinite set G ~ D 1 n Fa such that G ~ *F~ and 

let o ~ be the decomposition {D~-G,  D2 U G, D3,'",Dn). We note that 

J/*(D2 t_)G)= ~-/*D2. Suppose not. Then there must exist a set F eo~ such 

that Ff~*D 2 but F~* D2 UG.  But this implies that Fen G # * ~ .  Hence 

F c3 Fa ~ *  ~ so by the almost disjointness of~- ,  F must be Fx. But F~ - G ~ *  

and F 1 n D 2 = * ~  SO F 1 ~*  D 2 k.) G. 

Thus it follows that ~ / * ¢  ~_ ~ / * ~ .  On the other hand, F~ cannot belong to 

~ / * ¢  so ~ - / * ¢  while not empty because ~ is n-*separable, nevertheless has 

fewer than m elements. But m was chosen to be the smallest member of M so our 

assumption that M was not empty was false and the theorem is proven. [] 

Defining full and complete *separability in the obvious manner we see im- 

mediately that any fully or completely separable family is also fully or completely 

*separable respectively. On the other hand, the preceding theorem shows us 

that there is no *separability notion analogous to weak n-separability. Sharp 

n-*separability (a family ~ will be called sharply n-*separable iff it is n-*separable 

but not n + 1-*separable) however is more interesting. Since we are especially 

interested in maximal families, we consider the natural analog to 2.3. The proof  

turns out to be rather more difficult. 

THEOREM 6.2. I f  ~ e A ( N )  is sharply n-*separable, then there exists a 
sharply n-*separable family ff such that o~ ~ fgeM(N). 

PROOF. Let ~ =  {Do, D~,...,D,} be any n + 1 element decomposition such 

that o ~ /* ~  = ~ ,  and choose any family ,¢f such that ~- c y f  e M(N). W will, 

of  course, remain n-*separable, but we cannot assume that it will necessarily 

remain sharply n-*separable. We therefore proceed to alter Yt ° and possibly 

in such a way as to insure that the resulting family does not *separate over the 

resulting decomposition. I f  H e  W and d eM(H), then (J4 ,~ - { H } ) t 3 ~ '  will 

still belong to M(N), so we may assume without loss of generality that for each 
• . I 1 0  

D e N either ~ / * D  is empty or it has cardmahty 2 . Let T = {D e ~ :  Yf/*D ~ (g}. 

We distinguish three cases. If  ~ = JZ~, then we simply let ff = J¢'. If  ~ has at 

least two elements, then we may assume without loss of generality that it is equal to 

{Do, '" ,  Din}. Thus we can express aug/*~ as {H~: i < m, c~ e 2 ~°} where H~ _~ D v 
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In this case let ~ = (o~ ,° - ~¢t'/*~)W {k.)~<_mHj: O~ ~2~°}. Finally, suppose ff has 

exactly one element, which we may assume is Do. Choose any set HE.2,~/*Do, 

any infinite set I c H n D o  such that I # * H ,  and any family 0¢ = { I , : a ~ 2  ~¢°} 

~M(I).  Because o~/*Do - o~-/*~ = ~ ,  we have o~ ~ ~ - (H}. We also note 

that ~"/*(D1 u I)  must be empty. Suppose otherwise and let F ~ ~°/*(D 1 U I). 

But ~t°/*Dl = ~ ,  so F ~ I  ~ F ~ H must be infinite. Thus F = H. However, I 

was chosen such that H t3 (D O - I )  remained infinite, so H cannot belong to 

,¢t"/*(D1 U I ) .  We also note that the family W/*(Do - I )  U {H - I} is equal 

to ( ~ " / * O o - { H } ) w { H - 1 }  and can therefore be written in the form 

{J~:~e2~°}. Now let f g = ( ~ - J f / * D 0 )  U { I ~ U J ~ : ~ e 2 ~ ° } ,  and let d ° = 

(D o - I ,  D 1 U I ,  DE,..-, Dn}. Since o~-/* Do -- ~ we have o ~- ___ ~,  and thus f# is 

n-*separable. On the other hand ~ / * ~  -- ~ so f¢ is not n + 1-*separable. []  

Later (Theorem 8.3) we shall show that, under our usual hypothesis, there 

exist sharply n-*separable families for all n e N. Here we content ourselves with 

proving that the existence of a sharply n-*separable family implies the existence of 

sharply m-*separable families for all m < n. 

THEOREM 6.3. I f  there exists a sharply n + 1-*separable family ~ - ~ A ( N ) ,  

then there exists a sharply n-*separable family f~ ~ M(N). 

PROOF. Let -~ eD,+2(N) be any decomposition over which ~,~ doesn ' t  *separate 

and let D be any member  of  ~ .  Then, as in the proof  of  3.3 we look at 

= ( F e ~ :  F _ * N -  D}. ~ must be at least 2-*separable, so ~ must be 

infinite. I t  follows easily that , ¢g~A(N-D)  and is sharply n-*separable with 

respect to N - D. As earlier, we first convert ~ to a similar family over N and 

then, if necessary, use 6.2 to extend it to the desired maximal family. []  

7. Connectedness 

In another direction, we can ask about connectedness properties; i.e. given any 

two (or three or four, etc.,) points, is there a member  of the family which contains 

them both? We define a family ~ e P(N) to be (strongly) n-connected iff for every 

set S c N containing n elements the family {F ~ ~ :  S c F} is (infinite) nonempty. 

We first note that as in 2.1 we have: 

THEOREM 7.1. I f  a family ~ A ( N )  is n + 1-connected, then it is strongly 

n-connected. 
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PROOF. Let A ~ IN]" and let ff = {F ~ o~: A c F}. For  each m ~ N there must 

exist, by n -t- 1-connectivity, a set F belonging to o~, and therefore to ff such that 

A U {m} c F. Hence t.) ff = N so f¢ cannot be finite. []  

As in 2.2 we shall define a family g to be weakly n-connected if  it is n-connected, 

but not strongly n-connected; sharply n-connected if it is strongly n-connected 

but not n + 1-connected; and fully connected if  it is strongly n-connected for 

every n e N. 

It is clear that because the notion of connectedness deals only with finite sets, 

it is in no way affected by *separability, i.e. we may connect or disconnect a family 

at will without affecting its *separability properties. However, to connect or 

disconnect families while preserving their separability properties is more difficult. 

THEOREM 7.2. I f  there exists a family ~ = { F ~ : o ~ x } 6 M ( N )  which is 

weakly n-separable, strongly n-separable, fully separable, fully Ramsey, or 

completely separable, then: 

a) There exists a family ff ~ M(N) having the same separation properties as o~ 

and such that for each finite set A ~ N the family {G~ if: A c G)} has cardi- 

nality to. 

b) For each m e N  there exists a set A ~ IN] m+1 and families fire, ~ m e  M(N) 

which have the same separation properties as ~ and satisfy: 

1) The family {G~ffm: A ~ G} has exactly one element while the family 

(H ~ Ym:  A c H} is empty and 

2) For each set B ~ [N] m+l other than A both of the families (G e ff m:B ~ G} 

and {He  Xm: B c H} have cardinality x. 

Thus ff is fully connected while for each m e n  the family ff m is weakly m + 1- 

connected and the family ~° m is sharply m-connected. 

PROOF. Although the proofs are similar in all cases, those involving weak or 

sharp separability are slightly more complicated, so we shall treat one of these in 

full detail and merely mention the appropriate modifications which would be 

necessary in the other cases. Thus suppose ~- = {F~: ct ~ x} is weakly n-separable. 

Choose any NED, (N)  such that o~/N is finite. (If  g were sharply n-separable, 

we would choose ~ e D , + I ( N )  such that o ~ / ~  = ~ ;  in the other cases no such 

decomposition would be required.) Now for each c~ s K decompose F~ into two 

infinite almost-disjoint sets R, and S, such that if {F,}/N = ~;, then {R,, S ,} /N 

= 2~. Let ~ = ( R~: ~ e ~:} and 60 = {S~: ~ e ~}. We note that ~ U ~ is a maximal 

amily having the same separability properties as o~, and that we can think of  
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these properties as being carried by either one of these families. Thus l e t f  be any 

complete function from • onto the set of  all finite subsets of  N. Then the family 

f¢ = [ R,  wf(c  0:  c~ e ~:} kd 5P satisfies part  a. of  the theorem. 

Now choose any set A e [N]  m+l which is entirely contained in one member  of  

and let d = {G ~ f¢: A c G). By our construction ~4 has cardinality ~. Let 

= {B ~ [ S ]  m+l : B ~ A A cd{G ~ ~4: B c G} = ~c}. Because ~ is countable, we 

may choose a complete function f from ~ / o n t o  M such that for each G e d we 

have f(G) c G. We also choose a function g from d onto A such that for each 

G e s J  we have g ( G ) e A - f ( G ) .  I t  now follows easily that we may set 

ogF, = {G - (g(G)}: G e d }  k3 (f¢ - .4). Furthermore, if we choose some fixed 

element Go e -4, then we may set Nm = ( ~ m  -- {Go -- {g(G0)}}) W {Go}. []  

8. Relative existence proofs 

We are now ready to construct families having the various properties we have 

discussed. Our basic procedure will be first to well order an appropriate collection 

of families or sets such as D,(N) or the power set of  N, etc., and then to construct 

the required family, set by set, each set corresponding in some way to the ap- 

propriate member  of the collection. In order to guarantee that the process does 

not terminate too soon due to the creation of a maximal family we shall begin 

our constructions with the selection of a countable family ~ ' eA(N)  and then 

shall assume that no member  of  M(N) has cardinality less than 2 ~°. As we have 

stated earlier this last assumption follows easily from either the continuum 

hypothesis or Mart in 's  axiom and is therefore known to be relatively consistent 

with the axioms of Zermelo-Fraenkel set theory. This assumption is, of  course, 

equivalent to the assumption that for every countably infinite set S, every member  

of  M(S) has cardinality 2 ~°. 

T~_EOREM 8.1. I f  every member of M(N) has cardinality 2 No, then for each 

n > 1 there exist both weakly n-separable and sharply n-separable maximal 

almost-disjoint families. 

PROOF. By 2.3 and 3.3, it is sufficient to prove that there exist weakly n-separable 

families for each n > 1. 

Choose any n > 1, any ~ = {D~, ..., D.} eD,(N) such that each D ~ ~ is infinite, 

any partition 5 ° = {Si: i ~ w} of N such that for each S ~ 5P and each D e ~ the 

set S n D is infinite, and any function f from 2 ~° - co onto D,(N) - {N}. From 

these we construct a sequence {F, c N:  e e 2  ~°} by transfinite induction. First, 
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let F o = S o n D  1 and for each n e e )  - {0} let F,  = S,. Now, assuming that we 

have constructed Fp for all fl < e in such a way as to insure that, among other 

things, the family ~ ,  = {Fp: f le  ~} is almost disjoint, we construct F,. Suppose 

f(~) = ~ = {El, .--,E,}. Because f ( ~ ) ~  9 there must exist at least one set E e d ° 

which intersects two different members of 9 .  Thus neither the family g + = g - g / 9  

nor the family 9 + = 9 -  {D e 9 :  3E e 9 E  _q D} is empty. Further, it follows from 

our definition that ug+___ u g  +. Because of the construction of {Fi: ieco}~ 

the family o~+  ={F~ n U g + :  flec~ and Ft~ n U ~  + ~ * ~ }  is infinite as well as 

almost disjoint and therefore belongs to A ( U g + ) .  It follows easily from the 

hypothesis of the theorem that ~ +  is not maximal over u 9 +, so we can choose 

an infinite set G _c U 9 + which is almost disjoint from every member of o ~ + .  But 

G ~ u 9  + _c u d  ~+, G is infinite, and d ~+ is finite, so there must exist at least one 

E ~ g  + such that G n E  is infinite. Since E ~  +, E cannot be contained in any 

one member of 9 .  Thus there exist points m, n E E which are in different members 

o f g .  Let F,  = ( G n  E) u {m, n}. Then F~ is a subset o f E  ~ ~ but is not a subset of 

any set D ~ 9 .  Now let ~ = {F,: ~ 2 ~ ° } .  ~ is clearly n-separable and o ~ / 9  

= {Fo}, so o~ is weakly n-separable. []  

We note that the above construction can be modified in an interesting way by 

requiring t h a t f  be complete. 

Let ff be the family o~ _ {Fo) and let -~* and if* be the maximal families 

constructed in 2.3 which preserve the weak n-separability of o~ and the sharp 

n - 1-separability of ft. We see that @* has the property that while ~ - * / 9  has 

exactly one element, for every other decomposition ~ ED,(N) the family o~-*/o ° 

has cardinality 2 ~°. Similarly, i f * / 9  is empty, but again for each decomposition 

~D,(N) - (9} the family fq*/d ~ has cardinality 2 ~o. 

Completing Section 5 we have: 

THEOREM- 8.2. I f  every member of M(N) has cardinality 2 ~°, then there 

exists a fully Ramsey, completely separable family • ~ M(N). 

PROOF. Let o~" = {Fi: i~co} be any partition of N into co disjoint infinite sets, 

l e t f  be any function from 2 ~°-  co onto the set of all infinite subsets of N, and let 

O be any function from 2 ~° onto U ( D ( [ N ] ' ) :  m~co}. We shall extend ~-,~ to a 

family o ~ = { F , : a e 2  ~°} by transfinite induction. Assume that for some 

c~ E 2 ~° - co we have already defined ~-~ = {F~ = N: fl ~ ~} in a way such that, 

among other things, we know that it is almost disjoint. If  ~-,  finitely dominates 
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f (e) ,  then we set F~ = Fo. Otherwise, it follows from the construction and the 

hypothesis of the theorem that the family ~ +  = {Fanf(e) :  /3 e e /~  Fa n f ( e )  

* ~ }  belongs to A(f(cO) , but is not maximal. Thus we may choose a set 

A, c f ( ~ )  which is infinite but nevertheless almost disjoint from every member of 

o ~-+ and therefore from every member of o~ .  Let/3 be the least ordinal such that 

for some m e M  we have g(fl)eD([N]")and Io~'~lrn/g(/3)=~. By Ramsey's 

theorem we may choose an infinite subset F,  of A such that ~D eg(/3) IF , ] "  _ D. 

It now follows easily that o ~ =  { F , : e e 2  ~°} is fully Ramsey and completely 

separable. []  

Again we can strengthen our theorem somewhat by insisting t h a t f  and or O be 

complete, but the results are not as striking as in the case of 8.1. 

THEOREM 8.3. If  every member of M(N) has cardinality 2 e°, then for every 

natural number n there exists a sharply n-*separable family ~" e M(N). 

PROOF. By 6.2 it is sufficient to show that for every n > 1 we can find a de- 

composition ~eD,+I(N) and an n-*separable family ~ ' e  A(N) which does not 

*separate over N. As before, we choose a partition o~,o = {Fd ieog} of N into 

disjoint infinite sets, a decomposition ~ = {Do, '" ,D,} eD,+I(N) such that for 

each D e N  and each F e o~z-,o we have D n F ¢ * . ~ ,  and a func t ionf  from 2 ~ - o9 

onto D,,(N). Again, as before, we extend o~,o, by induction, to a family 

= {F,: e e 2e°}. Assume we have constructed F~ for all/3 e c~ in such a manner 

that ,~"~ = {Fp: fleck} is almost disjoint, o~- /*~  = ~2~, and for each f l e a  - o9 we 

have FtJ e o~"/f(fl). From the construction of o~o, it follows that for each i =< n the 

family ~ = { F p n D ~ : f l e  eAFpnD~¢*~Z~} is infinite and therefore by the 

induction hypothesis belongs to A(Di). Since, by the hypothesis of the theorem, 

each o ~  is too small to be maximal, there must exist infinite sets Go, GI,..., G, 

such that for each i __< n we have Gi _c Di and G~ is almost disjoint from every 

member of ~-~ and therefore every member of  ~-,. But since f(e)  contains fewer 

than n + 1 members, there must exist at least one E e l (e)  such that for some 

i ~ j we have E n G~ and E n G] both infinite. Thus we may set F~ = (G~ U Gj)nE. 

[ ]  

Finally, we show that, at least under our extra hypothesis, neither 4.1 nor even 

4.2.a can be extended to weakly 2-separable families. 

THEOREM 8.4. If  every member of M(N) has cardinality 2 ~°, then there 
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exists a weakly 2-separable Jamily ~ -~M(N)  and a set F ~ such that G ~ "  

implies that G ~ F  # S2~. 

PROOF. Let ~o, = {F~: i~ co} be a partition of N into infinite almost-disjoint 

sets such that i E co ~ F, n Fo # ~ and let f be any function from 2 ~° - o~ onto 

Dz(N ). We now extend ~-,o to a family ~ +  = {F,: ct ~2 ~°} cA(N)  by induction. 

Assume for some ~ > o) we have already defined ~ ,  = {Fp:/3 ~ ~} such that 

~ ' , e A ( N )  and suppose f ( a ) = ~ = { D 1 , D 2  }. I f  F o ~ D  1 or F o ~ D 2  define 

F~ = F o. Otherwise, since by hypothesis of  the theorem ff~ cannot be maximal, 

there must exist an infinite set F c N which is almost disjoint from every member 

of ~-~. But then there must exist a D ~ ~ such that F ~ D is infinite. Now choose 

any point n ~ Fo ~ D and let F~ = {n} L) (F ~ D). While it is clear that the family 

~-+ = {F~: a E2 ~°} belongs to A(N), is 2-separable, and has the property that 

F ~ o ~ +  ~ F c~ Fo # ~ ,  it does not follow that it is necessarily maximal. However, 

if not, choose any family fY such that ,~+ u ~ ~ M(N) and any element n 6 F o 

and let ~ = ~ + U ( G U { n } : G ~ f ¢ } .  []  

9. Martin's axiom 

So far we have, in our proofs,  required only the standard axioms of ZF + AC 

plus at most a hypothesis that every member  of A(N) of cardinality less than 

2 ~° is not maximal. For  our remaining results this does not appear to be strong 

enough. The continuum hypothesis, on the other hand, turns out to be much too 

strong. What  we shall use is an axiom due to D. A. Mart in [5] which is known to 

be relatively consistent with ZF + AC; i.e. if ZF + AC is itself consistent so is 

ZF + A C  + Martin 's  axiom [7]. Since the continuum hypothesis implies 

Martin 's  axiom but not conversely, our results will be strictly stronger than if we 

had used the continuum hypothesis. 

For  the convenience of the reader we shall state Martin 's  axiom here. 

Suppose (A, <A)  is a partial order structure. I f  for any uncountable set B c A 

there exist two distinct elements b, c ~ B which admit a common upper bound d in 

A (i.e. b < a d  and c <Ad) we shall say (A, < a )  has the countable antichain 

condition (c.a.c.). We define a set B_c A to be open if b eB  A b < n e ~ c e B  

and to be dense if  a e A ~ ~b ~ B a < a b. Finally, if o ~ is any family of  subsets of  

A, then we shall call a set G __c A an ~--genericfilter if G intersects every member  

of  o~-, for any f ,  g ~ G there is an h s G such that f < n h and g < a h, and a < a 

f e  G implies aE G. Using the above, Martin 's  axiom is: 
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AXIOM 9.1. (MARTIN). I f  (A, < A) is any partial order structure satisfying 

the countable antichain condition and Y is any family of fewer than 2 ~° 

open dense subsets of A, then there exists an ~'-generic filter in A. 

In our applications we shall confine our use of Martin's axiom to lemmas 

which the reader may prove directly from the continuum hypothesis using standard 

diagonalization techniques. Our first lemma is slightly more general than will be 

necessary because it is of interest in its own right. 

LEMMA 9.2. Suppose Martin's axiom holds. Then for any n ~ N  and any 

infinite ~ ~ A(N) of cardinaIity less than 2 ~°there exists an infinite set G ~ N 

which is almost disjoint from every member of ~ but which intersects each 

member of ~ in at least n points. 

PROOF. Suppose ~ and n are given. To apply Martin's axiom we must first 

construct a partial order structure (A, < a ) .  Let B = {(f, S ) : f  is a finite subset 

of N and S is a finite subset of ~" x N}. Thinking o f f  as a subset of the set which 

will be extended to become G and (F,  m ) ~  S as a bound on the eventual in- 

tersection of F and G, we define a pair (f ,  S)  ~ B to be consistent iff for every pair 

(F,  m) ~ S the set f c~ F has fewer than m + n elements. Now let A = {b ~ B: b is 

consistent} and let ( f , S )  < a ( g ,  T )  hold ifff___ g and S _c T. 

We first note that if both (f ,  S)  and (jr, T )  belong to A, so does (f ,  S u T) .  

Since this is a common upper bound and since the set of finite subsets of N is 

countable, we see that (A, < a )  satisfies the countable antichain condition. 

For  each m ~ N let H m = {(f, S )  : f  has at least m elements}. Each H m is clearly 

open and, because ~ is infinite, dense.Also, for each F ~ ~ let He = {(f, S)  : f  c~ F 

has at least n elements and for some m ~ N the pair (F,  m)  belongs to S}. Again, 

for the same reasons, each H e is open and dense. Hence 

= (Hm: m e N }  u (He: F ~ }  

is a family of fewer than 2 ~° open dense subsets of A. Thus by Martin's axiom there 

exists an ~-gener ic  filter H c A. It is now easy to see that the set 

G =  kJ{f:  3 S ( f , S ) ~ H }  

satisfies the conditions of  the lemma. [ ]  

COROLLARY 9.3. Martin's axiom implies that every member of M(N) has 

cardinality 2 ~°. 
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THEOREM 9.4. I f  Martin's axiom holds, then every 2-separable family 

o~ ~A(N) has cardinality 2 ~°. 

PROOF. Let o~ ~ A(N) have cardinality_less than 2 ~°. Then by 9.2 there exists 

an infinite set G c N such that o~" td (G} ~A(N) and for every F ~ - ,  F O G  has 

at least two elements. But this, by 4.3a, implies that ~ u {G}, and therefore o~ 

itself, cannot be 2-separable. []  

Finally we mention one interesting non-separable family. While it is easy to 

construct trivial non-separable families it would be of interest to find classes of 

"very"  non-separable families. The following example was motivated by [-1,2]. 

Let Q be the set of all rational numbers. We shall refer to a family ~-~  P(Q) as 

everywhere dense iff each member F ~ o ~ is everywhere dense with respect to the 

standard topology of the real line and we shall prove that there exists an everywhere- 

dense family o~ ~ M(Q). Again we first use Martin's axiom to prove a lemma. 

LEMMA 9.5. I f  Martin's axiom holds and if Y e A ( Q )  is an infinite every- 

where-dense family of cardinality less than 2 ~°, then there exists an infinite 

everywhere-dense set G ~ Q which is almost disjoint from every member of o~. 

PROOF. As in the proof  of 9.2 we first construct a partial order structure 

(A, < a). Let B = {(f, S ) :  f i s  a finite subset of Q and S is a finite subset of o~ x N}. 

Again we will think of a set f appearing in a member of B as a subset of the set G 

we are in the process of constructing, and a pair (F,  n) as an upper bound for 

the number of elements in the set F n G, so we define an element ( f ,  S )  to be 

consistent iff for each (F,  n)  ~ S the set F n f  has at most n elements. Now again 

we define A to be the set {b • B: b is consistent} and for (f ,  S)  and (g, T ) i n  A 

we again define ( f ,S~ < a  ( g , T )  to hold ifff__c g and S _~ T. 

As in our earlier construction, if ~f,S)  and (f ,  T )  belong to A so does 

(J, S t_) T ) ;  thus CA, < a)  satisfies the countable antichain condition. Now, for 

each F ~  we define Re = { ( f , S ) ~ A :  3n (F ,n )eS} ,  for each h e N  we define 

R, = {(f, S ) :  f has at least n elements}, and for each p, q e Q such that p < q we 

define Rpq = { ( f ,  S)  : 3 r  e f  p < r < q}. Finally, let 

fY = {Rv: F ~ o  ~}  U {R,: n e N }  u {Rvq: p, q e Q  and p < q}. 

We note that since each member of N is open and dense, and f¢ has cardinality less 

than 2 ~°, Martin's axiom allows us to choose a N-generic filter H ~ A. It then 

follows that the set G =  u { g :  3S(g, S ) e H }  satisfies the conditions of the 

lemma. []  
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We can now prove: 

THEOREM 9.6. Martin's  axiom implies the existence of  an everywhere-dense 

fami ly  ,~" E M(Q). 

PROOF. Let {F~: i~ co} be an infinite family of everywhere-dense pairwise 

disjoint subsets of Q. Using the lemma and transfinite induction we canl extend 

this to an everywhere-dense family f# = {G,: ~ ~ 2 ~°} E A(Q). If  G is maximal we 

are done; otherwise, choose any family ~ such that (ff u J~/d) ~ M(Q). We may 

assume that ~ has cardinality 2 ~° and can therefore be expressed as {H,: ~ ~ 2~°}. 

Now let ~- = {G~ UH~: ~e2~°}. [] 

10. Topological applications 

Let N be the topological space consisting of N and the discrete topology and 

let f in  be the Stone-t~ech compactification of N. It is well known [3] that 

fiN - N can be represented by the set of all non-principal ultrafilters over N with 

the topology generated by the following basis 9~. For each A _c N let A p 

= {u e f l S  - N:  A e u }  and let 9~ = (AP: A _c N}. We see immediately: 

THEOREM 10.1. For any A, B c_ N: 

a) A ~ U B a = ( A  U B) a 

b) A a n B  a = ( A ~ B )  a 

c) (fiN - N) - A a = (N - A) ¢ 

d) A a c Ba~-.A c * B  

e) A a = Ba~--~A = * B  

PROOF. Left to reader. [] 

It is also known that a set S c_ f in  - N is clopen iff it belongs to 9~. Thus we 

may look upon an almost-disjoint family ~- as "representing" a family 

~ -a=  {Fa: F ~ }  of disjoint subsets of f i n -  N. It then follows immediately 

that ~- is maximal iff ~d ~-a is everywhere dense. (This application of almost- 

disjoint families was suggested to the author by W. W. Comfort in a private 

communication.) While we see no direct applications of separability much less 

Ramsey properties, we can extend *separability properties obtaining: 

THEOREM 10.2. There exists a fami ly  ~ of disjoint clopen subsets of f in  - N 

such that U , ~  is everywhere dense, and for every decomposit ion~ of 

f l N - N  into finitely many clopen sets the fami ly  ~ / ~  is infinite. 
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PROOF. This is s imply a res ta tement  of  3.2. [ ]  

F r o m  Section 8 we have:  

THEOREM 10.3. I f  every infinite maximal  fami ly  of disjoint clopen subsets 

of f i N - N  has cardinality 2 ~°, then for each n e N  there exists an infinite 

maximal  fami ly  o~" of disjoint clopen subsets of f in  - N satisfying: 

a) For every decomposition of ~ of f i N -  N into n clopen sets the .family 

~ ' / ~  is infinite, and 

b) There exists a decomposition ,~ of fiN - N into n + 1 clopen sets such that 

the fami ly  ~ / ~  is empty. 

Proof.  This is merely  a direct interpretat ion of  8.3. [ ]  

Finally,  we can also interpret  and, in fact, extend 8.2 to:  

THEOREM 10.4. I f  every infinite maximal  fami ly  of disjoint clopen subsets 

of fiN - N  has cardinality 2 ~°, then there exists a fami ly  ~ t~of  disjoint clopen 

subsets of fiN - N such that for each u ~ (f in - N) - u ~ a n d  each open subset 

0 of f i n -  N containing u the f a m i l y ~ a / O  has cardinality 2 ~°. 

PROOF. Let  o~- be the complete ly  separable family constructed in 8.2, and look 

at any u e f in  - N and any open set O containing u. Because ~ is a basis, there 

must  exist a set A _c N such that  u ~ A P_c O. Suppose o~- finitely dominates  A. 

Then there exists a finite family  f ¢ c  . ~  such that  A ~ k.) ft. But, by 10.1, this 

implies that  u e A a c ( u  ff)a = u f f a _  u ~-P. But i fo~ does not  infitely domina te  

A, then by the r emark  following 8.2, we may  assume that  o~/A has cardinali ty 

2 ~°. Thus o~P/O ~ o~'P/A p must  also have cardinali ty 2 ~o. [ ]  
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